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ABSTRACT

We analyze the possibility of using arrays of accelerometers as Inertial Navigation Systems (INS) for Unmanned
Aerial Vehicles (UAV). Benefiting from the fabrication processes of MEMS technologies, accelerometers now offer
several advantages over gyroscopes, such as low weight, compactness, high reliability and low cost, for example.
An algorithm is introduced which allows the computation of the angular acceleration and the angular velocity of
a UAV from measurements ofn uniaxial accelerometers located atn arbitrary points on the UAV. By uniaxial
accelerometer we mean a sensor that allows the measurement of only one point-acceleration component. It is shown
that the necessary conditions for the algorithm to work are thatn be greater than or equal to nine, that the points be
non-collinear, and that the vectors pointing in the sensitive directions of all the sensors span the whole 3D space.
Notice that such analyses have been performed before, but only for specific strapdowns and never for a completely
general case, in which the positions and the orientations of the sensors are arbitrary, except for the conditions stated
above. In the linear algebraic system of3n equations in2n + 9 unknowns that has to be solved to compute the
angular acceleration and the angular velocity, the coefficients of the unknowns depend only on the geometry of
the accelerometer strapdown, and not on the measurements. Therefore, the condition number of the algebraic linear
system gives an upper bound of the error amplification incurred when solving the linear system for any accelerometer
measurements, which makes the condition number a suitable performance index for the design of UAV accelerometer
strapdowns. With regard to this new performance index, a comparison of the accuracies of existing accelerometer
strapdowns is conducted. Moreover, an error analysis is provided, taking into account stochastic errors—noise—and
deterministic errors—bias—in the sensor outputs. Results of numerical simulations are included to validate the error
models and to assess the real-time capabilities of the algorithm. Finally, a comparison between the performances of
all-accelerometer strapdowns and the traditional gyroscope-accelerometer INS is reported.

1 INTRODUCTION

New operation requirements call for small, low-cost UAVs for high-risk recognition missions. As an example,
theDragon Eye, which is shown in Fig. 1, is meant to perform “over-the-hill” reconnaissance missions for ground
personnel. Because these UAVs are to become widely used, their unit price needs to be kept very low. As their
structure and propellers are relatively simple, a significant part of the price of such UAVs comes from their Inertial
Navigation System (INS). Within the INS, gyroscopes are the limiting factor regarding cost and accuracy (Zorn,
2002). Indeed, the price for fiber optic angular-rate sensors is in the order of thousands of euros, whereas it is in
the order of ten euros for an accelerometer. There also exist mechanical gyroscopes for which the price is more
reasonable—a few tens of euros. However, these devices show very poor accuracy—typically 100 times less than
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Figure 1: TheDragon Eye, byAeroVironment Inc.

their optical counterparts—and tend to be unreliable because they require a spinning top. Moreover, gyroscopes are
in general bulkier and more power-demanding than accelerometers, which calls for larger battery packs. As a small
UAV such as theDragon Eyeis to be backpack portable and launched by hand or by means of a simple bungee rope,
weight is an important issue.

From all these problems comes naturally the idea of replacing all gyroscopes by an array of accelerometers that
are to measure acceleration components of a constellation of points on the vehicle. If the vehicle is regarded as a
rigid body, knowing the accelerations of several landmark points allows one to find the kinematic variables of the
vehicle, that is, its angular accelerationω̇, its angular velocityω, its attitude, which we will represent here by a four-
dimensional array of Euler-Rodrigue parametersη, its point-acceleration̈p, its velocityṗ and its positionp. This is
not a new idea—see Padgaonkar et al. (1975), Mostov (2000), and Peng and Golnaraghi (2004), for example—but
it has only been implemented with little success in limited applications until now. In this paper, we aim at shedding
light on the lack of success of previous attempts; whether replacing gyroscopes by accelerometers is feasible, taking
into account the accuracy offered by current technology. The analysis is done for a totally general case, where the
vehicle is equipped withn single-axis accelerometers taken to be located atn distinct points{Pi}n

i=1 and with their
sensitive axes parallel to corresponding unit-vectors{qi1}n

i=1.

2 THE ASSOCIATED ALGEBRAIC LINEAR SYSTEM

The UAV equipped with a strapdown ofn accelerometers is schematized in Fig. 2. Theith accelerometer is
attached to pointPi of the vehicle.R is the inertial frame with originOR; frameV is attached to the vehicle,
with origin OV ; and frameAi, i = 1, . . . , n, is also attached to the rigid body, with originPi, and with itsx-axis
pointing in the positive sensing direction of theith accelerometer. Vectorp is directed from pointOR to point
OB, while pi is directed from pointOR to pointPi. We also define the geometric centreC of the accelerometers
pC ≡ (1/n)

∑n
i=1 pi andri ≡ pi−pC. Moreover, matrixQ rotates frameR onto frameV, while matrixQi rotates

frameV onto frameAi.

The angular acceleratioṅω and the angular velocityω can be computed from the equation of rigid-body motion
of elementary mechanics:

p̈i = p̈C + ω̇ × (p̈i − p̈C) + ω × ω × (p̈i − p̈C) . (1)

This equation can be rewritten in the more compact form

p̈i − p̈C = Wri, i = 1, . . . , n, (2)
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Figure 2: TheDragon Eyeand hypothetic measurement points

whereW ≡ Ω̇ + Ω2, andΩ is the cross-product matrix1 (CPM) of ω. W can be referred to as the angular
acceleration matrix, as in Angeles (2003). Equations (2) can be rewritten as

Qi[p̈i]Ai −
1
n

n∑
j=1

Qj [p̈j ]Aj = Wri, i = 1, . . . , n. (3)

Let us now partition the rotation matrices into three column-vectors and define the components ofp̈i in their
corresponding framesAi:

Qi =
[
qi1 qi2 qi3

]
, [p̈i]Ai =

ai1

ai2

ai3

 . (4)

As acceleration componentai1 is along the sensitive axis of theith accelerometer, and is hence assumed to be known,
whereas the two other components remain unknown. Thus, eq. (3) becomes

ai1qi1 + ai2qi2 + ai3qi3 − c̈x −
1
n

n∑
j=1

aj2qj2 −
1
n

n∑
j=1

aj3qj3 = Wri, i = 1, . . . , n, (5)

where

c̈x =
1
n

n∑
j=1

aj1qj1.

With c̈x defined as the centroid of all the measured components of the point-accelerations expressed in the body
frameB. We move all unknown terms of eq. (5) to the right-hand side, thus obtaining

ai1qi1 − c̈x︸ ︷︷ ︸
known

= Wri − ai2qi2 − ai3qi3 +
1
n

n∑
j=1

aj2qj2 +
1
n

n∑
j=1

aj3qj3︸ ︷︷ ︸
unknown

, i = 1, . . . , n, (6)

1CPM(v) is defined as∂(v × x)/∂x, for anyx ∈ R3, with v ∈ R3 as well.
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Further, we partitionW into three row-vectors:

W =

wT
1

wT
2

wT
3

 (7)

This allows us to rewrite eq. (6) as

ai1qi1 − c̈x = Riw − ai2qi2 − ai3qi3 +
1
n

n∑
j=1

aj2qj2 +
1
n

n∑
j=1

aj3qj3, i = 1, . . . , n, (8)

where

Ri =

rT
i 0T 0T

0T rT
i 0T

0T 0T rT
i

 , and w =

w1

w2

w3

 .

From eq. (8), we cast the set of matrix equations into a single one:

Rw + Aa = b, (9)

where

R =


R1

R2
...

Rn

 ,

A =


αq12 αq13 βq22 βq23 · · · βqn2 βqn3

βq12 βq13 αq22 αq23 · · · βqn2 βqn3
...

...
...

...
...

...
...

βq12 βq13 βq22 βq23 · · · αqn2 αqn3

 , a =



a12

a13

a22

a23

· · ·
an2

an3


,

with α ≡ (1− n)/n, β ≡ 1/n, and

b =


a11q11 − c̈x

a21q21 − c̈x
...

an1qn1 − c̈x

 .

Now, we rewrite the linear system of eq. (9) as

Mx = b, (10)

where
M =

[
A R

]
, and x =

[
aT wT

]T
. (11)

Matrix W is thus found by solving the foregoing linear system of3n equations in2n + 9 unknowns. One can
notice that matrixM in eq. (10) depends only on the configuration of the accelerometer array and neither on the
measurements nor the orientation of frameV with respect to frameR. Thus, we can render this matrix in upper-
triangular form off-line, by means of Householder reflections (Golub and Van Loan, 1983), thereby obtaining a
system in the form

Ux = HTb, (12)

whereU is a3m× 2m + 9 upper-triangular matrix, andH is a3m× 3m orthogonal matrix.
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3 A PERFORMANCE INDEX FOR ACCELEROMETER STRAPDOWNS

3.1 The Condition Number ofM

For starters, we ascertain whetherM is of full rank. From eq. (11), we draw the necessary conditions for the
associated linear system to be either determined or overdetermined:

1. n ≥ 9;

2. points{Pi}n
i=1 are non-collinear;

3. vectors{qi,1}n
i=1 spanR3;

4. {Pi}n
i=1 and{qi,1}n

i=1 are chosen so that the columns ofA andR are linearly independent.

As matrixM depends only on the geometry of the accelerometer strapdown and not on the measurements, it
can be used as a performance index to compare different strapdowns. Indeed, a good geometry is one for which the
error in the acceleration measurements does not amplify when solving eq. (10). The condition numberκ(M) gives
a measure of the sensitivity of the solution of a linear system to roundoff errors, i.e.,

‖δx‖
‖x‖

≤ κ(M)
(
‖δM‖
‖M‖

+
‖δb‖
‖b‖

)
,

whereδx, δM andδb are the errors onx, M andb, respectively. However,κ(M) cannot be computed directly
here, as matrixM is dimensionally non-homogeneous. We normalize this matrix using the concept of characteristic
length:

M ≡
[
A (1/l)R

]
, (13)

wherel is the characteristic length of the accelerometer strapdown, and is defined as the normalizing lengthl result-
ing in the lowest condition number ofA augmented with nondimensionalizedR. Hence, we can write:

κ(M) = min
l

(κ(
[
A (1/l)R

]
)). (14)

Here, we will use the Frobenius norm, which can be defined, for any matrixB ∈ Rm×p with m ≥ p, as:

‖B‖F ≡
√

1
p
tr (BTB) =

√
1
p
tr (BBT ) (15)

Let us also define the orthogonal projectorsPr andPa of matricesR andA, respectively:

Pr ≡ 13n×3n −R(RTR)−1RT ; (16)

Pa ≡ 13n×3n −A(ATA)−1AT ; (17)

where13n×3n is the3n × 3n identity matrix. Using the Frobenius norm allows us to obtain symbolic expressions
for the characteristic length and the associated condition number, namely,

l = 4

√
αδ

βγ
, andκF (M) =

1
2n + 9

(√
αγ +

√
βδ

)
(18)

whereα ≡ 3
∑n

i=1 ‖ri‖2, β ≡ 2n− 2, γ ≡ tr[(RTPaR)−1], andδ ≡ tr[(ATPrA)−1].

The proof of these relations is not included here due to space limitations, but is available upon request.
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(a) (b)

(c) (d)

Figure 3: A sample of accelerometer strapdowns (a) nine accelerometers (Padgaonkar et al., 1975); (b) a tetrahedron-
shaped strapdown of twelve accelerometers,Plato (Parsa et al., 2003b); (c) twelve accelerometers (Peng and Gol-
naraghi, 2004); and (d) proposed strapdown of twelve accelerometers for a UAV

3.2 Examples

Using this new performance criterion, we can evaluate the efficiency of some accelerometer strapdowns which
have been proposed before. A sample is shown in Fig. 3, along with a new possible strapdown geometry for a UAV.
We obtain the condition-number values of Table 1 for the shapes depicted in Fig. 3, whereκF (M) is the Frobenius-
norm condition number andκ2(M) is the 2-norm condition number. The edges of the Platonic solids are all taken
to be 100 mm long. In the case of the UAV-strapdown, the coordinates of points{Pi}4

i=1 in frameV are

[p1]V =

0.5
0
0

 m, [p2]V =

−0.5
0

0.25

 m, [p3]V =

 0
−0.5

0

 m, and [p4]V =

 0
0.5
0

 m. (19)

Table 1: Properties of accelerometer arrays
accelerometer array l κF (M) κ2(M)

Padgaonkar et al. (1975) 135.3 mm 2.50 9.76
Parsa et al. (2003b) 113.1 mm 1.46 3.16

Peng and Golnaraghi (2004)164.2 mm 1.35 3.15
UAV strapdown 555.4 mm 2.35 11.66
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One can see that the condition numbers for the strapdown of Peng and Golnaraghi (2004) and forPlatoare fairly
low, although they are above their lower bound of unity. As the shape of the UAV constrains the geometry, the
resulting strapdown is further from the shape of a Platonic array, and, therefore, its condition number is higher than
that of other strapdowns.

4 ERROR ANALYSIS

As the aim of this paper is to compare the accuracy of all-accelerometer strapdowns with that of angular-rate
sensor strapdowns, we will limit the error analysis to the computation of the angular accelerationω̇ and the angular
velocityω.

4.1 Error on the Angular Acceleration ω̇

The sources of error affecting the angular acceleration matrix can be classified as deterministic or stochastic.
The deterministic errors are

1. the errors on the position of the accelerometers{δri}n
i=1;

2. the errors on the orientation of accelerometers, which can be represented by their corresponding rotation
matrices{δQi}n

i=1;

3. the bias errors on the sensor output{δab
i1}n

i=1;

4. the non-linearity errors and the scaling errors, which we label altogether as{δas
i1}n

i=1.

The stochastic errors are essentially noise in the accelerometer outputs{δan
i1}n

i=1. Notice that no knowledge of the
gravity field is required to compute the angular acceleration matrix. Indeed, uniform accelerations of the UAV do
not contribute to any of its rates of rotation. However, uniform acceleration does have an effect on the error in the
angular acceleration matrix if there are errors on the accelerometer orientations, that is, ifδQi 6= 13×3, where13×3

is the3× 3 identity matrix.

In our case, we will assume that the accelerometer strapdown is working under ideal conditions, that is, we
assume that the accelerometer strapdown has been calibrated such that the positions and the orientations of all the
sensors are accurately known. Also, the UAV is taken to be perfectly rigid, which means that the position and ori-
entation errors remain constant throughout the flight. We also assume that the accelerometer sensitivity has been
characterized and accounted for, which leaves us with the errorδai1 = δab

i1 + δan
i1. Here,δab

i1 andδan
i1 will be con-

sidered as random variables with normal probability densities. This assumption is reasonable, because most sensor
characteristics are close to being normally distributed—for example, see Analog Devices (2005).

Now, we can rewrite eq. (10) innormal form:

Mx = b, (20)

wherex ≡ [aT lwT ]T . From previous assumptions, we can write the perturbed system of eq. (20) as

M (x + δx) = b + δb. (21)

Notice that, since the only source of errors considered comes from the measurements, matrixM is known accurately.
We simplify the perturbed equation using eq. (20), which leads to

Mδx = δb. (22)
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As all the equations of the foregoing linear system come from rigid-body motion equations, the system is overdeter-
mined only in its form. Therefore, the exaction solution can be obtained by finding its least-square approximation.
Symbolically, this is done using the Moore-Penrose generalized inverse:

δx = M†
δb, (23)

whereM† ≡ (MTM)−1MT
. We now take the 2-norm on both sides of the equation, which yields

‖δx‖2 = ‖M†
δb‖2. (24)

From the definition of the 2-norm, eq. (24) can be rewritten as an inequality, namely,

‖δx‖2 ≤ ‖M†‖2‖δb‖2. (25)

Here,‖M†‖2 depends only on the strapdown geometry. This norm can be computed as‖M†‖2 = 1/
√

λmin, where

λmin is the smallest eigenvalue ofMTM.

On the other hand,δb depends on the acceleration measurements. From eq. (9), we obtain

δb =


δa11q11 − δc̈x

δa21q21 − δc̈x
...

δan1qn1 − δc̈x

 . (26)

Hence, the 2-norm ofδb becomes

‖δb‖2
2 = δbT δb =

n∑
i=1

(δai1)2 − 2δc̈T
x

n∑
i=1

δai1qi1 + nδc̈T
x δc̈x (27)

From eq. (5), we find

δc̈x =
1
n

n∑
j=1

δaj1qj1. (28)

Therefore, we can rewrite eq. (27) as

‖δb‖2
2 =

n− 1
n

n∑
i=1

(δai1)2 −
1
n

n∑
i=1

n∑
j=1
j 6=i

δai1δaj1qT
i1qj1. (29)

We replace each measurement errorδai1 by its rms-valueδarms ≡
√

(δab
rms)2 + (δan

rms)2, whereδab
rms andδan

rms

are the standard deviations of the bias errors and the noise, respectively. This leads to the approximative inequality

‖δb‖2
2 / (δarms)2

n− 1 +
1
n

n∑
i=1

n∑
j=1
j 6=i

∣∣qT
i1qj1

∣∣
 (30)

/ 2(n− 1)(δarms)2. (31)

Upon substituting the foregoing result in eq. (25), we obtain an approximative upper bound for the 2-norm ofδx,
namely,

‖δx‖2 /
√

2(n− 1)‖M†‖2δarms. (32)
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If we assume the error is evenly spread overx, we can compute the average errorδx on the entries ofx as

δx / ‖δx‖2/
√

2n + 9. (33)

Thus, the errorδw on the entries ofW can be estimated as

δw = δx/l. (34)

From the definition ofW, it is apparent that the angular accelerationω̇ can be computed from the angular accelera-
tion matrix as

ω̇ = vect(W) ≡ 1
2

w3,2 − w2,3

w1,3 − w3,1

w2,1 − w1,2

 , (35)

wherewi,j is the (i, j) entry of W. Thus, the upper boundδω̇ for the error on the components of the angular
acceleration becomes

δω̇ = δw /

√
2n− 2
2n + 9

‖M†‖2δarms

l
. (36)

4.2 Error on the Angular Velocity ω

Two methods have been used to compute the angular velocity in previous works. The two methods proposed are
reviewed here, and corresponding error estimates are derived.

4.2.1 First Method: Integrating the Angular Acceleration

In this method—see Padgaonkar et al. (1975) and Mostov (2000), for example—the angular velocity at timet is
computed as

ω(t) = ω(0) +
∫ t

0
ω̇(τ)dτ. (37)

No matter what the integration method is, we always have

ω(t) ≈ ω(0) + ∆t
k∑

j=1

ω̇(j∆t), (38)

wheret = k∆t and∆t is the time interval between to acceleration measurements—∆tis assumed to be constant.
Thus, the errorδω on the angular velocity components becomes

∆ω ≈ ∆t
k∑

j=1

δω̇(j∆t) (39)

/

√
2n− 2
2n + 9

‖M†‖2

l
∆t

k∑
j=1

δarms. (40)

Here,δarms was defined as a constant and, therefore, it can be taken out of the sum. Doing this yields an upper
bound, which is too large. Instead, we can replace it by the random variableδai1(t), which gives

δω /

√
2n− 2
2n + 9

‖M†‖2

l
∆t

k∑
j=1

(
δab

i1 + δan
i1(j∆t)

)
. (41)

Assuming that the noise component has a mean value of0, the angular velocity error due to the bias errorδωb of the
right-hand side of inequation (41) is

δωb =

√
2n− 2
2n + 9

‖M†‖2tδa
b
rms

l
. (42)
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Upon neglecting the variance in the bias errors of different sensors, the central limit theorem (Bendat, 1971) yields
the standard deviation

δωn =

√
2n− 2
2n + 9

‖M†‖2

√
t∆tδan

rms

l
. (43)

Finally, we freely add the average and the rms-value to compute the upper boundδω, that is,

δω / δωb + δωn. (44)

The error bound is found to grow linearly with time, which is natural, since time-integration is an unstable process—
it has one imaginary pole. To cope with this problem, Parsa et al. (2003a) proposed to compute the angular velocity
from the centripetal acceleration.

4.2.2 Second Method: Square-Rooting the Centripetal Acceleration

This method requires that an estimateω̂ of the angular velocity be computed from time-integration of the angular
acceleration, namely,

ω̂(t) = ω(t−∆t) +
∫ t

t−∆t
ω̇(τ)dτ. (45)

Afterwards,ω(t) is computed as

w′
i = wi,i −

1
2
tr(W),

if w′
i > 0

ωi = sgn(ω̂i)

√
wi,i −

1
2
tr(W),

else

ωi = 0, i = 1, 2, 3,

end if

whereωi andω̂i are theith entries ofω andω̂, respectively. If we assume that the sign ofωi can be determined
accurately, its errorδωi depends only on the diagonal entries ofW. Therefore, we can write

δωi =
3∑

j=1

∂ωi

∂wj,j
δwj,j / δw

3∑
j=1

∣∣∣∣ ∂ωi

∂wj,j

∣∣∣∣ =
3δw

4 |ωi|
. (46)

If we have to compute one single upper-boundδω to the angular velocity components, then we take the maximum
of the three bounds, namely

δω = max
i=1,2,3

δωi =
3δw

4 mini=1,2,3 |ωi|
. (47)

This last expression does not depend on time, which is why this method seems attractive as compared to the time-
integration method. However, it brings about another major problem: the error-bound blows up whenever one of the
angular velocity components becomes null. Perhaps a combination of both methods is desirable, but this is out of
the scope of this paper.

5 SIMULATION AND VALIDATION OF ERROR ESTIMATES

Simulations were performed in order to validate the error estimates obtained and to compare the performance of
all-accelerometer strapdowns with that of gyroscopes. The simulation was carried out using the strapdown shown in
Fig. 3(d). The accelerometers are taken to have a high accuracy: their bias errorsδab

i1 follow a normal distribution
with zero mean and standard deviation of 0.1 mg, while their noiseδan

i1 is also distributed normally with a 1 mg
rms-value.
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The virtual motion is that of a UAV turning in circles around pointOR, as shown in Fig. 4. As this is meant to
correspond to what would happen in a typical recognition mission, we choose plausible values of speed and radius of
turn, namely,v = 15 m/s andρ = 200 m. This corresponds to a constant angular velocityω = [0 0 0.075]T rad/s.

Figure 4: Sample motion

Figure 5(a) shows the resulting signals from one of the three accelerometers located atP1, with a sampling rate
of 100 Hz. The sensitive axis of this accelerometer is parallel to the pitch axis of the UAV. The components of
the angular acceleration are displayed in Fig. 6(b) along with the bounds on the error on the angular acceleration

components, which were computed using eq. (34). The values of‖M†‖2 andl for the strapdown used are4.807 and
l = 0.5554 m, respectively, while the measurement error is taken to beδarms = 1 mg. Notice that for the prescribed
motion, the real angular acceleration is null, and, therefore, the measured angular accelerationˆ̇ω is equal to its error
δω̇.

Figure 5: Signal from accelerometer #1 at pointP1

The angular velocity was computed using both the integration method and the centripetal acceleration method,
leading to the results of Figs. 7 and 8. From Figs. 6 and 7, it is apparent that the error models derived for the angular
acceleration and the angular velocity computed by time-integrating the angular acceleration are accurate. However,
the error bound for the angular velocity computed from the centripetal acceleration is somewhat too large. A possi-
ble reason for this is that all higher-order derivatives ofδωi tend to infinity asωi → 0. Therefore, it becomes more
difficult to predict the error magnitude at low angular velocities. Nevertheless, the estimated error bound is of the
same orders of magnitude as the simulated error, and, therefore, it is good enough for engineering purposes. It is
also seen from Figs. 7 and 8 that both methods encounter major problems: their error is much larger than the angular
velocity to be measured. The question is now: “can anything more be done to make accelerometer strapdowns a
viable solution for inertial navigation of UAVs?”
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Figure 6: Estimated angular acceleration

(a)

(b)

Figure 7: Angular velocity computed with the time-integration method: (a) estimates and (b) errors

One could propose to design a filter to reduce the noise level. Instead of doing this, let us simply remove the noise
component from the accelerometer readouts to see if filtering has the potential of giving satisfying results. Keeping
only the normally-distributed bias errorδab

rms = 0.1 mg, we obtain the angular velocity estimates of Figs. 9 and
10. The time-integration method still yields bad results, with an error growth-rate of approximately 0.007 rad/s2.
On the other hand, the centripetal acceleration method gives more promising results: without noise, the estimates of
the two null components of the angular velocity vanish. The error on the non-null component is approximately 0.01
rad/s≈2000◦/h. This is still worse than most of low-cost angular-rate sensors. For example, the MEMS angular-rate
sensors used by Brown and Lu (2003) have an accuracy of 500◦/h. In fact, as the error bound is proportional to
the bias in the accelerometers, it is apparent that a25 µg accuracy is needed to obtain the same accuracy with an
accelerometer strapdown.
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(a)

(b)

Figure 8: Angular velocity computed with the centripetal acceleration method: (a) estimates and (b) errors

(a)

(b)

Figure 9: Angular velocity computed with the time-integration method from noiseless accelerometer readouts: (a) es-
timates and (b) errors
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(a)

(b)

Figure 10: Angular velocity computed with the centripetal acceleration method from noiseless accelerometer read-
outs: (a) estimates and (b) errors
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6 CONCLUSIONS

The problem of estimating the angular velocity of a UAV was discussed in a general context, and, therefore, the
resulting error analysis allows one to compare accelerometer strapdowns to strapdowns that are currently used in
industry. The condition number of matrixM was found to be an appropriate performance index to assess the quality
of accelerometer strapdown geometries. As a result, the corresponding characteristic length represents the effective
size of the accelerometer strapdown.

Provided that the strapdown geometry is known accurately, a safe error bound was found and validated for a
stable estimate of the angular velocity—that is, using the centripetal acceleration method. This error bound is pro-

portional to‖M†‖2—which depends only on the strapdown geometry—to the errors in accelerometer readoutsδai1,
to 1/ |ωi|—whereωi is theith component of the angular velocity—and to the inverse of the strapdown sizel. Among
these variables, the critical parameter is the error in the measurements, for the others are dictated by the UAV and
its motion. The noise in the accelerometer signals can be reduced through filtering and sources of bias error can be
identified and accounted for, but at what cost? From the foregoing error results, it does not seem worth the effort to
replace angular-rate sensors with accelerometers, because the level of accuracy expected does not match the level of
accuracy of expensive optical angular-rate sensors. In fact, in the case of a 1 m wingspan UAV and for the motion
considered, the accelerometer strapdown could only approach the accuracy of low-cost angular-rate sensors, and
this, under the ideal conditions ofperfectnoise filtering and with a bias error as low as 25µg.

Nevertheless, accelerometer technology is still growing quickly and it may render all-accelerometer strapdowns
a viable option for UAV INS in the near future. In this eventuality, the error formulas introduced here can be used to
compare an all-accelerometer design with an angular-rate sensor design.

A Comparative Study of All-Accelerometer Strapdowns for UAV INS 

RTO-MP-SET-092 9 - 15 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 



References

Analog Devices Industry, 2005, Data Sheets of ADXL203 Accelerometer, www.analog.com.

Angeles, J., 2003,Fundamentals of Robotic Mechanical Systems, Second Edition, Springer, New York, USA.

Bendat, J. S., Piersol, A. G., 1971,Random Data: Analysis and Measurement Procedures, John Wiley & Sons, New
York, USA.

Brown, A. K., Lu, Y., 2003, “Performance Test Results of an Integrated GPS/MEMS Inertial Navigation Package”,
NAVSYS Corporation.

Golub, G. and Van Loan, C., 1983,Matrix Computations, Johns Hopkins University Press, Baltimore, USA.

Mostov, K. S., 2000, “Design of Accelerometer-Based Gyro-Free Navigation Systems”, Ph.D. Dissertation, Univer-
sity of California, Berkeley, USA.

Padgaonkar, A. J., Krieger, K. W., and King, A. I., 1975, “Measurement of Angular Acceleration of a Rigid Body
Using Linear Accelerometers”,ASME J. Applied Mechanics, pp. 552–556.

Parsa, K., 2003, “Dynamics, State Estimation, and Control of Manipulators with Rigid and Flexible Subsystems”,
Ph.D. Dissertation, McGill University, Montreal, Canada.

Parsa, K., Angeles, J. and Misra, A. K., 2003, “Estimation of the Flexural States of a Macro-Micro Manipulator
Using Accelerometer Data”,Proc. of the 2003 IEEE ICRA, Taipei, Taiwan, Vol. 3, pp. 3120–3125.

Parsa, K., Angeles, J. and Misra, A. K., 2001, “Pose-and-Twist Estimation of a Rigid Body Using Accelerometers”,
Proc. of the 2001 IEEE ICRA, Seoul, Korea, Vol. 3, pp. 1873–1878.

Peng, Y. K., and Golnaraghi, M. F., 2004, “A vector-based gyro-free navigation system by integrating existing
accelerometer network in an automobile”,Proc. of CSME Forum, London, Canada, pp. 421–430.

Zorn, A. H., 2002, “GPS-Aided All-Accelerometer Inertial Navigation”,ION GPS 2002, pp. 1442–1453.

A Comparative Study of All-Accelerometer Strapdowns for UAV INS  

9 - 16 RTO-MP-SET-092 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 

 


